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1. Introduction

The quantum theory of space-time has been one of the most important and basic concepts

in physic for long time. String theory, as a good candidate for theory of every thing, opens

different wonderful windows to the theory of gravity. Holography [1] is one of the most

important and beautiful subject which is statement about duality between string theory and

gauge theory. AdS/CFT correspondence [2] is a concrete example of such duality which is a

strong/weak duality. It has been found that there is also a weak/weak correspondence due

to large quantum number limit(BMN sector) in gauge theory and semi-classical strings [3].

The half BPS sector of such theories has some important property which helps one to

study the AdS/CFT duality in different regime. In fact, Information coming from BPS

sector is protected by supersymmetry and so all computations can reliable either at weak

coupling or strong coupling.

Recently [4, 5], the dual super gravity solutions of half BPS sector of theories with

PSU(2, 2|4) SUSY algebra was found in a uniform way. All such theories are classified by

different subgroup of PSU(2, 2|4) with 16 supercharges which are SU(2, 2|2), PSU(2|2) ×
PSU(2|2) × U(1),SU(2|4) and SuperPoincare part of PSU(2, 2|4).
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The supergravity solutions are demanded to have some specific properties. More pre-

cisely,

i) solutions should have globally well-defined time-like (or light-like) Killing vector isom-

etry,

ii) the bosonic part of the isometries should be compact,

iii) solutions should be smooth.

Interestingly, it was shown in [4, 8] that supergravity theory with PSU(2|2)×PS−U(2|2)×
U(1) algebra, which arises in IIB theory naturally, is dual to a free fermion description

of N = 4 super Yang-Mills on R × S3. The phase space of two theories is given by

two dimensional space with two topologically different region. The solution for different

boundary condition gives different deformation of maximally supersymmetric AdS5 × S5

space. There have been done a lot of work after that for understanding these duality

better [9].

It was also shown that [5] different gravity solution with SU(2|4) SUSY algebra can

be dual to different theories including: Plane wave Matrix model(BMN Matrix model),

2 + 1 super Yang-Mills on R × S2 and N = 4 super Yang-Mills on R × S3/Zk. In fact,

this solutions which appear in M-theory are all deformation of AdS7 × S4 and AdS4 × S7

spaces. Finding a free fermion description is an important aim in completing such duality.

In this paper, at next section, we review the LLM geometry in IIB supergravity and

discuss some basic points about the phase space of solutions. We observe that some in-

teresting solutions are invariant under scaling. Then, we introduce the LLM geometry in

M-theory which can be determined by solution of Toda equation. In section 3 we study

the scale invariant solutions of Toda equation and prove that such solutions obey a cubic

algebraic equation. In section 4 we find some simple scale invariant solutions so called

”separable” solution, PP-wave solution and M-5 brane solution. We discuss the dual gauge

theory of these solutions briefly.

2. Review of LLM geometry

At two next subsection we review briefly the LLM geometry arising in theories with

PSU(2|2)×pSU(2|2)× U(1) or SU(2|4) superalgebra. The former case gives the super-

gravity solution for half BPS sector in IIB theory and the later, solution for half BPS

sector in M-theory.

2.1 LLM geometry in IIB theory

For the case PSU(2|2)×PSU(2|2)×U(1) algebra, the bosonic part is SO(4)×SO(4)×U(1).

Considering the whole requirements about gravity solution, the solution was found as [4]

ds2 = −h−2(gdt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3,

h−2 = y cosh G, y∂yVi = εij∂jz,

z =
1

2
tanh G (2.1)
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Here, the dilaton and axion field were assumed to be constant and the three-form field

strengths are zero. The local coordinate y is defined using a closed one from constructed

by spinor bilinears. It has special property since is the product of the radii of two spheres.

Whole solution can be determined by a single function z which satisfies following differential

equation

∂i∂iz + y∂y

(

∂yz

y

)

= 0. (2.2)

Using the change of variable as Φ = z/y2, this differential equation (2.2) can be reduced to

a six dimensional Laplace equation with spherical symmetry in four of the dimensions, y is

then the radial variable in these four dimensions. At y = 0 the product of the radii of two

spheres is zero. So one could have singularities at y = 0 unless z has a special behavior. As

it was shown in, the smoothness condition implies that we have two boundary condition

on x1x2 plain.

z =
1

2
S3 shrinks, z = −1

2
S̃3 shrinks (2.3)

So, the moduli space of solution can be determined by specifying regions on x1x2 plain

that either z = 1
2

or z = −1
2

(which so called black region or white region respectively).

More interestingly, an arbitrary configuration of two different regions corresponds to phase

space of free fermions in an specific gauge theory. In fact, the author of has shown that the

half BPS sector of the N = 4U(N) SYM on R × S3 is equivalent to an N fermion system

in one dimensional harmonic oscillator potential.

An important observation which has been done in LLM paper is that the flux of field

strengths either for the five form or dual five form field is proportional to the area of regions

where S3 or S̃3 shrinks. Using the corresponding fermion phase space quantization, one

can write the precise quantization condition on the area of the droplets in the x1x2 plane as

(Area) = 4π2l4P N or ~ = 2πl4p, (2.4)

which means that we have a fundamental length in theory corresponding to each branes [4].

At the level of supergravity solution, such property means that after a scaling of

coordinates xi, y such that xi → λxi, y → λy then we have to have ds2 → λds2 [4, 10].

Here λ is an arbitrary constant and we actually perform rigid deformation on the shape

of the original configuration. Such scaling behavior is important because of its relation to

Penrose limit [10].

Now we focus on finding solutions which are invariant under such scaling namely

z(λxi, λy),= z(xi, y). (2.5)

Such solutions are a particular subset of solutions of (2.2) ,specially when we have multi

boundary conditions we can’t write the solution in this way uniformly.

Using the variables η = x1

y and ζ = x2

y the equation (2.2) reduces to

(1 + η2)∂2
ηz + (1 + ζ2)∂2

ζ z + 2ηζ∂2
ηζz + 3η∂ηz + 3ζ∂ζz = 0. (2.6)
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One can find different kind of solutions of (2.2) for example separable solution where

z(η, ζ) = f(η) + g(ζ). In this case one obtains

f(η) = k1 +
k′
1

√

1 + η2
− K

4
ln (1 + η2) − K

2

∫

sinh−1 η

(1 + η2)3/2
dη,

g(ζ) = k2 +
k′
2

√

1 + ζ2
+

K

4
ln (1 + ζ2) +

K

2

∫

sinh−1 ζ

(1 + ζ2)3/2
dζ, (2.7)

where k1, k
′
1, k2, k

′
2 and K are arbitrary constants.

For the case where we have an isometry on x1 direction one has to set K = 0 and the

above differential equation has following solution

z(η) = k1 + k′
2

η
√

1 + η2
, (2.8)

which is the pp-wave solution [11]. From the boundary condition (2.3) we have k1 = 0 and

k′
1 = 1

2
. This pp-wave solution has two different boundary where extended to infinity. In

fact, such extension allows us to write the solution in terms of η, ζ variables.

Motivated by the above construction of solutions by η, ζ variables, we want to study

the supergravity solutions in M-theory.

2.2 The LLM geometry in M-theory

The other class of subgroup of PSU(2, 2|4) with 16 supercharges is SU(2|4). The bosonic

part of the symmetry is SO(6) × SO(3) × U(1) and the 11 dimensional supersymmetric

solutions with that symmetry structure is given by [4]

ds2
11 = −4e2λ

[

(1 + y2e−6λ)(dt + Vidxi)2 +
e−6λ

1 + y2e−6λ
[dy2 + eD(dx2

1 + dx2
2)]+

+dΩ2
5 + y2e−6λdΩ̃2

2

]

e−6λ =
∂yD

y(1 − y∂yD)
, Vi =

1

2
εij∂jD (2.9)

The function D determines the whole solution and obeys three dimensional continuous

version of the Toda equation

∂2
x1

D + ∂2
x2

D + ∂2
yeD = 0. (2.10)

The boundary condition for having non singular solution in LLM construction are that at

y = 0

∂yD = 0, D = finite, S2 shrinks

D ∼ ln y S5 shrinks (2.11)

These conditions ensure that the y coordinate combines with the sphere coordinates in a

non singular fashion.

The moduli space of solutions again is a two dimensional space with different configu-

ration of black (S2 shrinking sphere) or white (S5 shrinking sphere) regions.
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However, the existence of a free fermion description is not very clear. In fact, the fluxes

of four form field strength and its dual is given by

N5 ∼
∫

D

dx1dx22(y
−1eD)|y=0, N2 ∼

∫

D

dx1dx22(e
D)|y=0. (2.12)

In both cases, the fluxes are given by the area measured with the metric obtained from

D. So, one has to find the solution of Toda equation (2.10) at first, and then, computes

the number of 2-brane or 5- brane. Furthermore, from the nonlinearity of Toda equation,

solutions of such differential equation has not a well behavior under scaling of coordinates.

For example, see the PP-wave solution (4.4). But we have an important property of

solution. The three dimensional Toda equation has SU(∞) (conformal) symmetry in x1x2

plane in which the form of the metric (2.9) is preserved under such symmetry. Defining

z = x1 + ix2 the symmetry is

z → f(z), D → D − log(|∂f |2), (2.13)

where f(z) is an arbitrary holomorphic function of z. So, one may hope that by a conformal

transformation obtains a solution which has well behavior under scaling. At the end, the

uniqueness of the solutions of nonlinear Toda equation with boundary conditions (2.11)

is another issue which one has to consider it. For example, for the pp-wave solution (4.5)

in x1x2 plane we have three nonequal solution for cubic algebraic equation. Defining

S± =
(y2

4
+

x3

27
±

√

y4

16
+

y2x3

54

)1/3

, (2.14)

then equation (4.5) has the following solutions

(eD)1 = S+ + S− +
x

3

(eD)2 = −1

2
(S+ + S−) +

1

2
i
√

3(S+ − S−) +
x

3

(eD)3 = −1

2
(S+ + S−) − 1

2
i
√

3(S+ − S−) +
x

3
. (2.15)

(eD)1 satisfies the S2 shrinking boundary condition for x ≥ 0 and (eD)2 or (eD)3 (which

are nonequal) satisfy the S5 shrinking boundary condition for x ≤ 0. The flux driven

from (eD)2 or (eD)3 are equal up to a minus sign. Interestingly, in ρθ coordinate (which

will be defined in section 4.2), we have a unique solution. Such behavior also exist for

AdS4 × S7 or AdS7 × S4 solutions [4] where in (x1, x2, y) coordinate we have a quartic

algebraic equation. Considering all above difficulties cause some ambiguities for having a

fermion description at CFT side.

Motivated by similar case in IIB theory, we will study some solutions of Toda equation

in terms of rational variables. These solutions, at least, have well behavior under scaling

of coordinates.

Note that if we find a solution D such that D(λxi, λy) = D(xi, y), then at the level of

metric (2.9) we have

(xi, y) 7→ (λxi, λy) ⇒ ds2 7→ λ2/3ds2. (2.16)

such behavior comes from the fact that the coordinate y has dimension (length)3.
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3. Scale invariant solution of Toda equation

Three dimensional Toda equation is a limit of the exactly solvable Toda molecule equation

and appears in a variety of physical cases, running from the theory of hamiltonian systems

to general relativity in the theory of self dual Einstein spaces or in the problem of finding

four dimensional hyper-Kaheler manifold with a rotational Killing vector [12].

Unfortunately, finding exact solution of the Toda equation is very hard and only few

solutions are known. There are also some methods based on group theoretical consideration

in which one can find the symmetry structure of the equation and corresponding generator

and then it is possible to reduces the equation to a simpler equation. The Toda equation

allows an infinite dimensional symmetry algebra, a realization which is given by generators

obeying Virasoro algebra without central charges(Witt algebra). The reduced equation in

this way gives rise to instanton solutions. For example, one may consider the separable

solution in the sense that D(xi, y) = F (xi) + G(y), which cases that the Toda equation

reduces to Liouvile equation which has well known instanton solution.

For the case that we have an additional isometry on x1 direction one can use the

following change of variables [13]

eD = ρ2, y = ρ∂ρV, x = ∂θV, (3.1)

and reduces the Toda equation to a three dimensional Laplace equation with cylindrical

symmetry as

1

ρ
∂ρ(ρ∂ρV ) + ∂2

θV = 0 (3.2)

Considering the boundary condition in ρθ plane one realizes that [5] the problem in this

plane reduces to finding solution for an electroestatic Laplace equation with some conduct-

ing disk located at some constant θi . The solution is determined by specifying the charge

of the disks which is proportional to M2 brane number and distance between disks which

is proportional to M5 brane number. Even in this case the exact solution for different

configuration of disks is not known and few solutions were obtained.

In the procedure which we will discuss it, we derive some of solutions such that have

scale invariance property and relate to solution in electrostatic problem. Interestingly, we

will see that all solutions obtained in this fashion obey a cubic algebraic equation.

The three dimensional Toda equation (2.10) using change of variables

η = x1/y, ζ = x2/y; (3.3)

reduces to

∂2
ηD + ∂2

ζ D + η2∂2
ηeD + ζ2∂2

ζ eD + 2η∂ηe
D + 2ζ∂ζe

D + 2ηζ∂2
ηζe

D = 0. (3.4)

Defining the auxiliary functions U(η, ζ) and V (η, ζ) (in which ∂ζU and ∂ηV are not zero) as

U(η, ζ) = ∂ηD + η2∂ηe
D,

– 6 –
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V (η, ζ) = ∂ζD + ζ2∂ζe
D, (3.5)

and using

∂2
ηζe

D = eD(∂ηD∂ζD + ∂2
ηζD) =

∂ζU − ∂ηV

η2 − ζ2

∂2
ηζD =

1

2
(∂ζU + ∂ηV ) − 1

2

η2 + ζ2

η2 − ζ2
(∂ζU − ∂ηV ), (3.6)

after some computations one finds

(eD)3 + f(η, ζ)(eD)2 + g(η, ζ)(eD) + h(η, ζ) = 0, (3.7)

where

f(η, ζ) =
η2(η2 + 2ζ2)∂ηV − ζ2(ζ2 + 2η2)∂ζU

(η2ζ2)(η2∂ηV − ζ2∂ζU)

g(η, ζ) =
(η2 − ζ2)UV + (2η2 + ζ2)∂ηV − (2ζ2 + η2)∂ζU

(η2ζ2)(η2∂ηV − ζ2∂ζU)

h(η, ζ) =
∂ηV − ∂ζU

(η2ζ2)(η2∂ηV − ζ2∂ζU)
. (3.8)

and the Toda equations (2.10) reads

∂ηU + 2
ηζ

η2 − ζ2
∂ζU(η, ζ) + ∂ζV − 2

ηζ

η2 − ζ2
∂ηV (η, ζ) = 0. (3.9)

This is a first order linear partial differential equation. One can write various solutions for

equation (3.9) such

i) U(η, ζ) = F1

(

ζ

η2 + ζ2

)

, V (η, ζ) = F2

(

η

η2 + ζ2

)

ii) U(η, ζ) =
b

a
V (η, ζ) = F3

(

aη + bζ

η2 + ζ2

)

, (3.10)

where Fi’s are general functions. Notice that the functions F1 and F2 are the background

solutions for equation (3.9). From the linearity of equation (3.9) the superposition of any

solutions of this equation is also a solution of (3.9). But, one has to check the consistency

condition in which the obtained solution (3.7), (3.9) should also satisfy equations (3.5).

This consistency check is hard and we only present some simple solutions using somehow

different idea.

4. Generating some solutions

Solving the Toda equation even in the form (3.5), (3.7) and (3.9) is very hard and the

equation (3.7) presents an special property of scale invariant solution. In fact, one has

to check the consistency conditions of solutions. In the following subsections, we present

some simple cases known as separable solution and next to that we find PP-Wave solution

in term of these scale invariant variables. At the next section, we drive a solution in terms

of η only by solving the Toda equation directly.
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4.1 Separable solution

The simplest solution can be obtained by rewriting the Toda equation in terms of (z, z̄, y)

variables and assuming that eD = F (η̃)G(ζ̃) where η̃ = z
y−y0

and ζ̃ = z̄
y−y0

. In this case

the solution is

eD = (y − y0)

(

z̄m+1

zm

)

or eD = (y − y0)

(

zm

z̄m+1

)

(4.1)

Using conformal transformation (2.13) and the reality condition on D one obtains

eD = c1y + c2. (4.2)

This solution doesn’t preserve the S2shrinking boundary condition and so is a singular

solution.

In electrostatic point of view, we have a configuration with a line of charge at ρ = 0

axis in the presence of the external potential Vb and potential V as [5]

V = −πN

2k
log ρ + Vb, Vb =

1

gsk
(ρ2 − 2η2). (4.3)

After compactifying the x1 direction one obtains a supergravity solution corresponding to

N = 4 super Yang-Mills on R × S3/Zk [5, 14]. This theory is an orbifold of N = 4 SYM

which the simplest dual orbifolded supergravity solution is AdS5/Zk ×S5. The singularity

at y = 0 corresponds to the Zk orbifold fixed points in IIB sense.

As it was shown in, this solution can be viewed as solution for the near horizon geometry

of semilocalised intersecting M2-branes [15]. It can also be dual to a superconformal theory,

since it is a AdS2 fibration [5, 16].

4.2 PP wave solution

Using changes of variables (3.1), the Toda equation reduces to a cylindrically symmetric

Laplace equation in three dimensions(3.2) which has a polynomial solution as

V = ρ2η − 2

3
θ3 (4.4)

The boundary in this case transformed to ρ = 0 and θ = 0. Solution preserves S5 boundary

condition at ρ = 0 and S2boundary condition at θ = 0. So from electrostatic point of view,

we have an infinite disk at θ = 0 and only θ ≥ 0 is physically meaningful.

By the above changes of variables one finds the function D obeys a cubic algebraic

equation as

(eD)3 − x(eD)2 − y2

2
= 0 (4.5)

Now acting a conformal transformation as z′ = (z)3/2, one can rewrite the above equation as

(eD′

)3 − 2

9





(

η̃

ζ̃

)1/2

+

(

ζ̃

η̃

)1/2


 (eD′

)2 − 32

729

1

η̃ζ̃
= 0, (4.6)
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where η̃ = z
y and ζ̃ = z̄

y . So we find a solution of (3.4) in terms of η̃ζ̃ variables such that

f = −2

9





(

η̃

ζ̃

)1/2

+

(

ζ̃

η̃

)1/2


 , g = 0, h = − 32

729

1

η̃ζ̃
. (4.7)

The solution (4.4), (4.6) is pp-wave solution in M-theory with particle by nonzero −p−
which are translationally invariant along x−. After compactifying x− direction one finds

dual gravity solution corresponding to the plane wave (BMN) matrix model [3, 4]. In fact

in IIA variables the solution in the UV region goes over to the UV region of the solution

for D0 branes [5, 6, 17].

For rotationally invariant solutions in x1x2 plane, one may perform a conformal trans-

formation to map circular droplet to strips. In fact, the plane and cylinder can be mapped

into each other conformally. In this case writing two dimensional metric dx2
1 + dx2

2 in

polar coordinates (r, θ) and using change of variables as x2 → ln r and D → D + 2 ln x2,

one obtains the two dimensional Toda equation which has a scale invariant solution after

performing another conformal transformation z′ = (z)3/2.

4.3 M-5 brane solution

In this section, we consider the case that D is not a function of x1 and we want to find the

scale invariant solution of Toda equation by solving the differential equation directly. We

will also consider x2 = x. Then, using η = x−x0

y−y0
the Toda equation can be written as

∂η(D) + η2∂η(e
D) = 2c, (4.8)

where c is an arbitrary constant. Defining eD = ρ2 one may rewrite this equation as

∂η

∂ρ
=

ρ

c
η2 +

1

ρc
. (4.9)

The solution can be obtained by using the Ricatti change of variable

η(ρ) = − c

ρ

W ′(ρ)

W (ρ)
. (4.10)

Then

W ′′(ρ) − 1

ρ
W ′(ρ) +

1

c2
W (ρ) = 0. (4.11)

One can easily find that the solution of this equation has the following general form,

W (ρ) = c1ρJ1

(ρ

c

)

+ c2ρY1

(ρ

c

)

. (4.12)

where J1 and Y1 are the first and second Bessel functions respectively. For the case

c2 = 0 using (4.10) we obtain

η(ρ) = −1

ρ

J0(
ρ
c )

J1(
ρ
c )

(4.13)
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Although one would like to find an explicit expression for inverse function eD = ρ2(η), but

we are interested in analyzing the solution and boundary condition in the ρ coordinate.

For the case where the S5 shrinks one needs as y → y0 then η ∼ 1

ρ2 . Since when ρ → 0,

J0(
ρ
c ) → 1 and J1(

ρ
c ) →

ρ
2c , the boundary condition is satisfied.

For the case where S2 shrinks using ∂D
∂y = 2

ρ
∂ρ
∂y one finds

∂D

∂y
=

−2c(x − x0)

(y − y0)2 + ρ2(x − x0)2
. (4.14)

We see that for y0 = 0 the expression(4.14) will be zero only at x = ∞ and for y0 6= 0 at

x = x0 and x = ∞. However, solution(4.13) shows that ∞ corresponds to ρ = 0 which

means that D is not finite. So the boundary condition doesn’t preserve at ∞. For the other

case, one has ρ 6= 0 and so the second boundary condition preserved at x = x0. One may

consider (4.13) as a solution which produces AdS5 ×X space which X is a six dimensional

compact space. In fact, after an analytic continuation of original Supergravity solution (2.9)

one finds that this AdS5 × X solutions determined with a single function D which obeys

the same Toda equation but it should preserves following boundary conditions [4, 18]

∂yD = 0, D = finite, S2 shrinks

D ∼ ln (y − y0) y0 6= 0 S5 shrinks. (4.15)

One may also consider c = 0 at (4.13), but this does not imply an interesting solution for

the metric.

Let us consider the case y0 = 0 and x0 = 0 and c = ±1. In fact noticing that if D(x, y)

be a solution of Toda equation then D(xi, λy) + 2 ln y is also a solution of Toda equation,

then, one can generate the solution for the case that c 6= ±1 using (4.13).

From the electrostatic point of view, the above solution corresponds to a potential

V = J0(
ρ
c )e

η

c . Both two cases c = ±1 imply a singular solution but considering the

linearity of Laplace equation one can write a regular solution as J0(ρ) sinh η. Obtaining a

regular solution in which the change of variables (3.1) be well defined, imposes choosing

following solution [5]

V (ρ, η) = I0(ρ) sin(η), (4.16)

where I0(ρ) is the first modified Bessel function. This can be done by choosing c = i,

noticing the fact that only when a regular solution is at hand one can choose an imaginary

value for c. This solution corresponds to two infinite separated disks in ρθ plane.

The solution (4.16) in IIA language is dual to little string theory on R × S5. In large

ρ regime the solution asymptotes to N IIA NS5 branes wrapping on R × S5 [19].

5. Conclusion

The free fermion description of N = 4 SYM on R × S3 has had an important rule in

AdS/CFT correspondence [8]. In fact, it was shown that the moduli space of half BPS

sector of IIB supergarivity solutions exactly mapped to phase space of fermion system [4, 5].

– 10 –
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This space divided to two regions where either S3 sphere shrink or S̃3. Considering the fact

that the area of such regions gives the number of brane and considering similar description

in fermion phase space side, one realize that the whole solution is invariant under scaling

although, a generic solution may not be scale invariant.

Motivated by such observation, we study some scale invariant solutions in half BPS

sector of supergravity solutions in M-theory, although the existence of a free fermion de-

scription has not been understood yet. By introducing two auxiliary functions, we proved

that all such solutions can be obtained by solving a cubic equation.

Unfortunately, even with this simplification, finding the solution is hard, because that

one has to do a consistency check on solution. We obtain a simple solution so called

”separable” solution which in IIA sense corresponds to solutions of little string theory. We

also write the PP-wave solution in terms of this homogeneous coordinates. Finally, when

we have an addition isometry, we find the solution of Toda equation directly. Using this

solution one can find a regular solution in electrostatic point of view.
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